
Module Title Python programming for AI and Visualization

Course Title MSc Applied AI

School ☐ ASC ☐ ACI ☐ BEA ☐ BUS ☒ ENG ☐ HSC ☐ LSS

Division Computer Science and Informatics

Parent Course
(if applicable)

Level 7

Semester The module will be offered in both semester

Module Code (showing
level)

CSI_7_PPA

JACS Code (completed
by the AQE)

Credit Value

20 credit points

Student Study Hours Total: 200
Contact hours: 52
Student managed learning hours: 148
Requirements for Self-Managed Learning Hours:
Undertake research work, complete and write up lab exercises and
assessments.

Pre-requisite Learning
None

Co-requisites
None

Excluded combinations
None

Module co-ordinator Name: TBC

Short Description
(max. 100 words)

This module provides an intensive introduction to programming,
especially for students without a computer science background.
The module will cover the basics of program development in Python,
with a specific attention of its use in visualizing and exploring data, and
in translating mathematical problems and models into a computational
solution

Aims

The module aims at providing the students with the fundamentals
programming skills to understand and develop computational solutions
in Python, and to translate formalized algorithm in computational
solutions.

Learning Outcomes
(4 to 6 outcomes)

A. Knowledge and Understanding:

• Knowledge and understanding of fundamental programming

concepts

(covers BCS requirements: 6.1.1, 6.1.2, 6.1.3, 7.1.2, 7.1.6, 7.1.7, 7.1.8;

8.1.1, 8.1.2, 8.2.1, 8.2.2, 9.2.1, 9.2.2)

• Knowledge and understanding of Python programming language

(covers BCS requirements: 6.1.1, 6.1.2, 6.1.3, 7.1.2, 7.1.6, 7.1.7,

7.1.8; 8.1.1, 8.1.2, 8.2.1, 8.2.2, 9.2.1, 9.2.2)

B. Intellectual Skills:

• Conduct a critically evaluative analysis of a case-based domain
using appropriate mathematical and computational modelling; also
developing the in-depth knowledge necessary to identify and apply
suitable techniques in order to synthesize advanced theory/practical
concepts. (covers BCS requirements: 8.1.1 - 8.1.3; 9.1.1 - 9.1.3;
10.1.1 - 10.1.3)

C. Practical Skills:

• Ability to develop a basic program following the principles of software

design and development, including debugging and documentation

(covers BCS requirements: 8.1.1 - 8.1.3; 9.1.1 - 9.1.3)

• Ability to frame a problem in a controlled simulation, to gather insight
in the complexity of the data
(covers BCS requirements: 8.1.1 - 8.1.3; 9.1.1 - 9.1.3; 10.1.1 - 10.1.3)
D. Transferable Skills:

• Be able to visually present the results of computational model and of

data analysis

(BCS requirements: 8.2.1, 8.2.1; 9.1.1 - 9.2.3; 10.2.1 - 10.2.2)

• Be able to make concise, engaging and well-structured oral
presentations, arguments, and explanations; Communication
/presentation of computational solution and coding prototype to a
wide range of audiences.
(BCS requirements: 8.2.1, 8.2.1; 9.1.1 - 9.2.3; 10.2.1 - 10.2.2)

Employability There is current and rapidly increasing commercial need/demand for
graduates/postgraduates with skills in the areas of computing and
computational modelling. The module delivers skills in these areas that
are directly relevant in both commercial and research environments.

Teaching and learning
pattern

Contact hours includes the following:
(please click on the checkboxes as appropriate)

☒ Lectures ☐ Group Work:

☐ Seminars ☐ Tutorial:

☒ Laboratory ☐ Workshops

☐ Practical ☐ VLE Activities

Indicative content The following list of topics is indicative (not exhaustive) of typical
module content:

• Fundamentals of programming: data, data representation,
variables. Conditional structures and iterations. Functions
(input parameters and output values, variable scope),
classes and modules.

• Using programming libraries.
• Best practices of Python coding software engineering of

solutions, testing, debugging, documenting
• Translating mathematical formulations and pseudo-coded

algorithms into Python. Basic optimization methods:
gradient descent, simulated annealing.

• Data loading and organization
• Data visualization
• Data simulations

Assessment method
(Please give details – of
components,
weightings, sequence
of components, final
component)

Formative assessment:
 The students will usually be given a range of weekly tutorial-based
tasks (both individual/group work) comprised of formative exercises
imparting the knowledge and skills required to satisfy the learning
outcomes

Summative assessment:
Coursework 50%
Final report 50%

Mode of resit
assessment (if
applicable)

Formative assessment:

Summative assessment:
Coursework 50%
Examination 50%

Indicative Sources
(Reading lists)

Core Materials:
• Downey, Allen, Think Python, Second edition. (O'Reilly Media

2016)
• Phuong Vothihong, Martin Czygan, Ivan Idris, Magnus Vilhelm

Persson & Luiz Felipe Martins. Python: End to End Data
Analysis. (Packt Publishing 2017)

Optional Materials:

• Zed A. Shaw, : A Very Simple Introduction to the Terrifyingly
Beautiful World of Computers and Code, (Addison-Wesley
Professional 2017)

• Anthony Scopatz, Kathryn D. Huff , Effective Computation in
Physics: Field Guide to Research with Python (O’Reilly, 2015)

• Sarah Guido, Andreas C. Mueller , Introduction to Machine
Learning with Python: A Guide for Data Scientists (O’Reilly,
2016)

• Mario Döbler, Tim Großmann, The Data Visualization Workshop:
An Interactive Approach to Learning Data Visualization, 2nd
Edition Paperback (2020)

• DE Knuth. The Art of Computer Programming - Volume 1
(Addison-Wesley; 3rd edition 1997).

• Benjamin Baka. Python Data Structures and Algorithms. (Packt
Publishing 2017)

Other Learning
Resources

TBD

Supplementary materials for all of the software used in the module will
be available on the module VLE site.

